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1. Summary 

Estimating target-detection performance in the rapid serial visual presentation 
(RSVP) target-detection paradigm can be challenging when the interstimulus 
interval is small relative to the variability in human response time. The challenge 
arises because assigning a particular response to the correct image cannot be done 
with certainty. Existing solutions to this challenge establish a heuristic for assigning 
responses to images and thereby determining which responses are hits and which 
are false alarms. 

We developed a regression-based method for estimating hit rate and false-alarm 
rate that corrects for expected errors in a likelihood-based assignment of responses 
to stimuli. Simulations show that this regression method results in an unbiased and 
accurate estimate of target-detection performance. The regression method had 
lower estimation error than 3 existing methods, and in contrast to the existing 
methods, the errors made by the regression method do not depend strongly on the 
true values of hit rate and false-alarm rate. The most commonly used existing 
method performed well when simulated performance was nearly perfect, but not 
when behavioral error rates increased. 

Based on its better estimation of hit rate and false-alarm rate, the regression method 
proposed here would seem the best choice when estimating the hit rate and  
false-alarm rate is the primary interest. 

2. Introduction 

Finding target images in large databases of candidate images is a difficult problem, 
and while computer vision algorithms are adequate for some tasks, for others 
human vision is required. A key insight to approaching this problem is that humans 
tasked with finding target images achieve high target-detection accuracy even if the 
images are shown very rapidly (Intraub 1981). Using RSVP with images displayed 
at rates of 2–10 Hz can dramatically increase the rate at which target images are 
found in image databases compared with self-paced image viewing (Mathan et al. 
2006; Parra et al. 2008). This is a somewhat different use of RSVP from its classical 
use as a tool for investigating the time course of perception (Potter and Levy 1969; 
Chun and Potter 1995; Keysers et al. 2001; Nasanen et al. 2006), with particular 
focus on the attentional blink (Raymond et al. 1992) and repetition blindness 
(Kanwisher 1987) phenomena. In those uses of RSVP, a typically short stream of 
words or images is displayed and then the viewer is asked one or more questions 
about the just-viewed RSVP stream. Here, instead, images are presented 
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continuously, and the viewer is asked to press a button immediately in response to 
images containing a target of interest. 

In practical applications of the RSVP target-detection paradigm, the goal is to 
identify images that are targets in a potentially large database of unknown images. 
However, in experiment settings, the identity of images are known, and the question 
is how well a human subject performs the target-detection task. RSVP  
target-detection task performance can be difficult to quantify due to response time 
variability (Mathan et al. 2006; Sajda et al. 2010). This report introduces a novel 
method for estimating performance on the RSVP target-detection task in 
experimental settings in which image labels are known.  

RSVP target-detection performance can be quantified by the subject’s hit rate (HR) 
and false-alarm rate (FAR). Knowing whether a response is a hit or a false alarm 
requires knowing whether a target or a nontarget stimulus evoked the response. 
Because of response-time variability, it can be difficult to know what stimulus 
evoked a button-press response. For example, a response might be a relatively fast 
response to a target stimulus or a relatively slow response to the preceding nontarget 
stimulus. When the response-time variability substantially exceeds the 
interstimulus interval, situations arise in which a response could just as easily be 
attributed to any of several stimuli. One method currently in use for estimating HR 
and FAR entails establishing a temporal window after each target stimulus  
(e.g., 0–1 s relative to target onset) and declaring any response that falls in that 
window a hit. Other methods estimate a response-time probability density function 
and use that to assign responses to stimuli.  

Here, a method is introduced that generally outperforms other methods currently in 
use for estimating the HR and FAR in RSVP target-detection tasks. This method 
and associated findings have been reported previously (Files and Marathe 2016). 
The purpose of this report is to provide instructions and source code for using this 
method while still providing context. Using simulations with known HRs and 
FARs, we show that the method introduced here is more accurate than established 
methods. This advantage is especially clear when the stimulus presentation rate is 
high and/or the FAR is nonzero. In addition to more accurately measuring the 
experimental effects of manipulations on target-detection performance, accurate 
estimates of detection performance can improve detection of target stimuli in 
applications in which the status of any given image as target or nontarget is 
unknown a priori. 
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3. Methods, Assumptions, and Procedures 

3.1 Estimation Methods 

3.1.1 Established Methods for Estimating HR and FAR 

There are 2 classes of methods for determining HR and FAR in common use with 
RSVP target-detection tasks. The first class uses a windowing approach. This class 
of methods establishes a minimum and a maximum response time, typically from 
0 to 1000 ms posttarget. Any response that falls within that window after a target 
is declared a hit, and then the HR is determined as the number of declared hits 
divided by the total number of targets. Responses that do not fall within a window 
corresponding to any target are declared false alarms, and the FAR is calculated as 
the number of false alarms divided by the number of nontarget stimuli (Fig. 1). 
Implementations of this method differ in how responses are scored when more than 
one response falls within a response window and/or what to do when a response 
falls within more than one response window. 

 
Fig. 1 Timelines illustrating existing response assignment methods. Blue hash marks 
indicate onset times of nontarget stimuli; red hash marks indicate onset times of target stimuli. 
Green hashes indicate times at which a response occurred. Interstimulus interval is 0.5 s. A) 
In the window method, a window of time (typically 0–1 s posttarget) is established. Responses 
falling within that window are declared hits. In this example, the first and third responses 
would be classified as hits, and the second would be classified as a false alarm. B) The same 
experiment timeline as analyzed with the distribution method. The black curves are the 
response time probability density function reversed and with its origin at the times of response. 
Numbers below stimulus hashes show the attribution resulting from the corresponding 
response, as computed using Eq. 1. Using maximum likelihood (the max method) assigns the 
response to the stimulus with the highest likelihood. 

The second class of methods for estimating HR and FAR uses a response-time 
distribution to estimate a response-time probability density function (RT-PDF) that 
is used to assign responses to specific stimuli (Gerson et al. 2006). The likelihood 
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that a button press was in response to a specific candidate stimulus is estimated as 
the probability of that particular response time relative to the time of the candidate 
stimulus (i.e., the estimated value of the RT-PDF). The likelihood is then 
normalized by dividing the likelihood for each candidate stimulus by the sum of 
the likelihoods for all candidate stimuli (Marathe et al. 2014a). From here, the 
methods in this class diverge. One approach is to assign responsibility for the 
response to the stimulus with the maximum likelihood. If that stimulus is a target, 
the response is counted as a hit, and if the stimulus is a nontarget, the response is 
counted as a false alarm. The other approach is to distribute responsibility for the 
response to various stimuli according to the normalized likelihood that they 
generated the response. Because the distribution method is central to the method 
proposed in this report, it will be useful to define the function used to distribute 
responsibility, called here the apportionment function. Given times of stimulation 
S, a stimulus of interest at time Si, a response at time T, and an RT-PDF function f, 
the apportionment function is defined as 

 𝐴𝐴(𝑆𝑆𝑖𝑖,𝑇𝑇) =  𝑓𝑓(𝑇𝑇−𝑆𝑆𝑖𝑖)
∑ 𝑓𝑓�𝑇𝑇−𝑆𝑆𝑗𝑗�𝑗𝑗

. (1) 

Using this approach, if the apportionment worked out such that 0.52 of the response 
was apportioned to a target stimulus and the remaining 0.48 was apportioned to a 
nontarget stimulus, then that response would count as 0.52 of a hit and 0.48 of a 
false alarm (Fig. 1). 

3.1.2 Proposed Method 

The regression method introduced here is based on the aforementioned 
apportionment method (Eq. 1). The proposed method estimates the expected 
response apportionment to each stimulus as a function of the probability that nearby 
stimuli will generate responses and the proportion of those possible responses that 
will be apportioned to the stimulus of interest. The expected response 
apportionment for the ith stimulus is the sum of the expected apportionment due to 
responses to all nearby stimuli, Sj: 

 𝐸𝐸[𝐴𝐴(𝑆𝑆𝑖𝑖)] =  ∑ 𝐸𝐸�𝐴𝐴𝑠𝑠�𝑆𝑆𝑗𝑗 , 𝑆𝑆𝑖𝑖��𝑗𝑗 , (2) 

where As(Sj,Si) is similar to A(Si) but only computes the attribution onto Si of 
responses actually generated by Sj. The expected value of As(Sj,Si) is 

 𝐸𝐸[𝐴𝐴𝑠𝑠(𝑆𝑆𝑗𝑗, 𝑆𝑆𝑖𝑖)]  =  ∑ 𝑝𝑝(𝑇𝑇)𝐴𝐴(𝑆𝑆𝑖𝑖,𝑇𝑇)𝑇𝑇 . (3) 

The term p(T) is the probability that a response elicited by Sj occurs at time T. This 
term can be split into the probability that any response is elicited by stimulus Sj, 
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denoted p(R|Sj), times the probability that a response occurs at a specific time. This 
latter quantity is obtained from the response time probability density function, f. 

 𝐸𝐸�𝐴𝐴𝑠𝑠�𝑆𝑆𝑗𝑗 , 𝑆𝑆𝑖𝑖�� =  𝑝𝑝�𝑅𝑅�𝑆𝑆𝑗𝑗�∑ �𝑓𝑓 �𝑆𝑆𝑗𝑗 − 𝑇𝑇�𝐴𝐴(𝑆𝑆𝑖𝑖,𝑇𝑇)�𝑇𝑇 . (4) 

Substituting Eq. 4 into Eq. 2 yields the following: 

 𝐸𝐸[𝐴𝐴(𝑆𝑆𝑖𝑖)]  =  ∑ (𝑝𝑝�𝑅𝑅�𝑆𝑆𝑗𝑗�∑ �𝑓𝑓 �𝑆𝑆𝑗𝑗  –  𝑇𝑇�𝐴𝐴(𝑆𝑆𝑖𝑖,𝑇𝑇)�)𝑇𝑇𝑗𝑗 . (5) 

Ffor simplicity of notation, the limits of summation for j and T are not given. 
However, f(x) is zero for negative x and approaches zero as x increases, and A(Si,T) 
goes to zero as Si − T increases in magnitude; so in practice, only a limited range of 
j and T need to be calculated.  

This equation can be simplified under the assumptions of a typical RSVP  
target-detection experiment, namely that there are stimuli that are targets and 
stimuli that are nontargets. The probability of responding to a target is a constant 
hit rate HR, and the probability of responding to a nontarget is a constant  
false-alarm rate FAR. If the stimulus at Sj is a target, p(R|Sj, Sj ∈ tar) is HR. If the 
stimulus at Sj is a nontarget, p(R|Sj, Sj ∈ n.t.) is FAR. Separating out the target and 
nontarget stimuli near the stimulus of interest, the equation becomes 

 𝐸𝐸[𝐴𝐴(𝑆𝑆𝑖𝑖)]  =  𝐻𝐻𝐻𝐻 ×   ∑ ∑ �𝑓𝑓 �𝑆𝑆𝑗𝑗 − 𝑇𝑇�𝐴𝐴(𝑆𝑆𝑖𝑖,𝑇𝑇)�𝑇𝑇𝑆𝑆𝑗𝑗 ∈ 𝑡𝑡𝑡𝑡𝑡𝑡    +  𝐹𝐹𝐹𝐹𝐹𝐹 ×
  ∑ ∑ �𝑓𝑓 �𝑆𝑆𝑗𝑗 − 𝑇𝑇�𝐴𝐴(𝑆𝑆𝑖𝑖,𝑇𝑇)�𝑇𝑇𝑆𝑆𝑗𝑗 ∈ 𝑛𝑛.𝑡𝑡. . (6) 

For each stimulus in the experiment, both summation terms can be computed based 
on the known stimulus timings and the RT-PDF. This yields a system of simple 
linear equations with one equation per stimulus and 2 unknowns: HR and FAR. 
Least-squares linear regression can then be used to find the values of HR and FAR 
that best fit the observed attribution for each stimulus; these are the estimates of the 
HR and FAR for the experiment. 

3.1.3 Using the Proposed Method 

An easy way to apply this method is to utilize the RSVP Performance Estimator 
(RPE) package provided under the Apache License 2.0 in the Appendix and 
available at the following GitHub page: https://github.com/btfiles?tab=repositories. 

This package implements the regression method in MATLAB, using the statistics 
toolbox, and consists of 3 files: RSVPPerformanceEstimator.m (A.3), 
fitExGauss.m (A.4), and exGauessPdf.m (A.5) as well as a script illustrating their 
use (A.1). 

To use the RPE package in a MATLAB script, set up 3 data variables, initialize the 
estimator, and run the estimator. The 3 data variables are stim_time, stim_label, and 

https://github.com/btfiles?tab=repositories
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button_time. The stim_time variable should be a vector of the times (in seconds) at 
which each stimulus presentation started. The stim_label variable should be a 
vector of Boolean values designating each stimulus as a target (true) or nontarget 
(false). Both stim_time and stim_label should have length equal to the number of 
stimuli presented. The button_time variable should be a vector of the times (in 
seconds) at which each button press started. With the 3 data variables set up, 
initializing the estimator requires the following line of code: 

e = rpe.RSVPPerformanceEstimator(stim_time, stim_label, button_time); 

Then, the estimator is run: 

[hr, far] = e.runEstimates; 

Estimator execution could take several minutes depending on the number and 
proximity (to each other in time) of the stimuli. Also, if multiple responses follow 
a stimulus, a warning is given, and only the first response is used. The estimator 
has 2 outputs: the estimated HR and the estimated FAR. 

3.2 Evaluation Methods 

Having introduced the mechanics of the proposed method, simulations are 
described that compare the performance of the proposed method with state-of-the-
art methods. The general approach was to simulate responses based on a known HR 
and known FAR and then analyze the simulated data using the proposed method as 
well as the 3 other methods for estimating HR and FAR, as described (Fig. 2). To 
ensure that the stimulation timeline we used was well-founded, we used the timeline 
of stimulus and response events from a previously described RSVP target detection 
experiment (Marathe et al. 2013, 2014b; Ries and Larkin 2013). Portions of the 
methods of that experiment are summarized here because the stimulus timeline and 
response time distributions from that experiment were used in our simulations. 

3.2.1 Participants 

Fifteen participants (9 male, 6 female, ages 18–57, average 39.5) volunteered for 
the current study. Participants provided written informed consent, reported normal 
or corrected-to-normal vision, and reported no history of neurological problems. 
Fourteen of the 15 participants were right-handed. The voluntary, fully informed 
consent of the persons used in this research was obtained as required by federal and 
Army regulations (DOA 1990; DoD 1999). The investigator has adhered to Army 
policies for the protection of human subjects (DOA 1990). 
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3.2.2 Stimuli and Procedure 

Stimuli consisted of short video clips that contained either people or vehicles in 
background scenes (target stimuli) or just background scenes (nontarget stimuli). 
Participants were instructed to make a manual button press with their dominant 
hand immediately when they detected a target and to abstain from responding to 
nontarget stimuli. Video clips consisted of 5 consecutive images, each 100 ms in 
duration; each video clip was presented for 500 ms. There was no interval between 
videos such that the first frame was presented immediately after the last frame of 
the prior video. If a target appeared in the video clip, it was present on each  
100-ms image. The nontarget-to-target ratio was 90/10. RSVP sequences were 
presented in 2-min blocks, after which participants were given a short break. 
Participants completed a total of 10 blocks. 

3.2.3 Simulations 

3.2.3.1 Extracting a response-time probability density function 

All simulations and analyses were done using custom scripts in MATLAB version 
2014a (MathWorks, Natick, Massachusetts). The RT-PDF used in the simulations 
was derived from the responses in the original timeline (Fig. 2, step A). An 
empirical response-time distribution was created by iterating over all target stimuli 
and looking for any response that fell between 200 and 1500 ms after the target. 
The latency of responses relative to the associated target events were then fit with 
an ex-Gaussian distribution using maximum-likelihood estimation (Lacouture and 
Cousineau 2008). The ex-Gaussian distribution is the sum of an exponential and a 
Gaussian; this distribution was selected because it compactly describes empirical 
response-time distributions reasonably well (Palmer et al. 2011). After estimating 
the RT-PDF, the responses in the original timeline were no longer considered for 
the simulations. 
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Fig. 2 Simulation method; the process for one iteration of the simulation. It was repeated 
250 times per combination of HR and FAR. Analysis was done separately using each of the 4 
analysis methods described in the text. 

3.2.3.2 Simulating responses 

Several simulations were then run to determine the accuracy with which the 
estimation methods described recover the HR and FAR under different true values 
of those quantities. A total of 101 HRs, ranging uniformly from 0 to 1, were 
combined with 101 FARs, also ranging uniformly from 0 to 1, resulting in 10,201 
combinations of HR and FAR. To collect statistics on the performance at each 
combination of HR and FAR, each simulation was repeated 250 times.  

For each simulation, an HR and an FAR were selected (Fig. 2, step B). Then a 
random subset of all targets and nontargets was selected to generate responses such 
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that the simulated rates were as close as possible to the selected rates (while still 
having whole numbers of responses). When a response was generated, a random 
draw was taken from the response-time distribution (as described by the RT-PDF), 
and a response event was added at that time after the generating stimulus. 

3.2.3.3 Analyzing the simulated experiment 

After simulating all of the responses necessary to generate the target HRs and 
FARs, the stimulus and simulated response timelines were analyzed using the 4 
methods described: the window method, the maximum likelihood method (max), 
the distribution method, and the regression method (Fig. 2, Step C). Three stimulus 
presentation rates (stimuli per second) were simulated as well: 2, 4, and 10 Hz. The 
original experiment used a presentation rate of 2 Hz. To simulate faster presentation 
rates, the sampling rate of the experiment was multiplied by 2 and 5, respectively, 
while leaving the response-time distribution unchanged. This guaranteed that any 
change in the HR and FAR estimates was due to the presentation rate and not a 
difference in the total number of stimuli. 

Three of the 4 methods tested (all but the window method) make use of the  
RT-PDF. In the first round of simulations, these 3 methods used the same  
RT-PDF that generated the data. In an experiment setting, however, the RT-PDF is 
not known a priori and must be estimated. When the HR is high enough and the 
FAR is low enough, an RT-PDF can be estimated from the data, as outlined 
previously. However, if the HR is suspected to be low, the method may produce an 
inaccurate estimate of the RT-PDF. We wanted to examine the relative performance 
of these methods when the RT-PDF cannot be estimated. In the second round of 
simulations, to simulate a worst-case scenario, the 3 methods that rely on an  
RT-PDF estimate were provided an RT-PDF that was uniform over the interval  
[0, 1000 ms]. That interval was chosen to correspond to the interval used by the 
window method. This flat RT-PDF introduces a high probability of multiple stimuli 
receiving equal attribution for a given response. This is relevant to the max method, 
because it assigns full attribution to the stimulus with maximal attribution. To 
resolve ties, the max method attributes the response to the earliest stimulus with 
maximal attribution.  

Finally, to examine the impact that the choice of method for HR and FAR 
estimation can have on experimental results, the HR and FAR were estimated using 
the actual (rather than simulated) response data. 
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4. Results and Discussion 

For each simulation, the HR and FAR estimation errors were computed as the 
difference between the simulated rate and the rate estimated by the estimation 
method under examination. For example, if the true HR was 0.8, but the method 
estimated the HR to be 0.75, the estimation error would be −0.05. 

The remainder of this section is organized as follows. First, an illustrative subset of 
the simulation results is presented. This subset was chosen to show simulation 
results for HRs and FARs that might be obtained with poor, good, or excellent 
target-detection performance. Second, all of the simulation results are summarized 
to provide a comprehensive overview of the performance of the 4 estimation 
methods. Third, results of statistical tests are presented that tested for bias in the 
estimation methods used. Fourth, the results of simulations with an inaccurate  
RT-PDF are summarized. Finally, the results of applying each of the 4 estimation 
methods to real (rather than simulated) RSVP target-detection data are shown to 
illustrate the practical impact that the choice of estimation method can have. 

4.1 Illustrative Subset of Results 

Although actual performance in RSVP target detection will depend heavily on the 
stimuli, task, and participant, 3 pairs of HR and FAR were chosen as illustrative 
exemplars of poor (HR 0.50, FAR 0.10), good (HR 0.80, FAR 0.02), and excellent 
(HR 0.99, FAR 0.01) performance (Fig. 3). Overall, when HR is high and FAR is 
low (i.e., in the good and excellent performances), the distribution and max 
methods make larger systematic errors than the other 2 methods, and the window 
method makes errors comparable to the regression method. As the presentation rate 
increases, the difference in the relative performance increases as well. In the poor 
performance case, the errors made by the regression method are clearly smaller than 
the others except at the 2-Hz presentation rate. At that rate, the regression, max, 
and distribution methods make comparable errors that are smaller than the errors 
made by the window method. 
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Fig. 3 Estimation method performance examples. These plots illustrate estimation results 
for specific combinations of simulated HR and FAR when the true probability mass function 
of the response times was known. The pairs HR 0.50, FAR 0.10; HR 0.80, FAR 0.02; and  
HR 0.99, FAR 0.01 were selected as illustrative of poor, good, and excellent RSVP target-
detection performance, respectively. Bars show the median estimation error, and error bars 
show plus/minus one standard deviation for each of the 4 estimation methods at 3 presentation 
rates. The upper row of panels show HR estimation errors, and the lower row shows FAR 
estimation errors. 

4.2 Full Results 

Considering the full range of simulated HRs and FARs, for all but the regression 
method, substantial systematic errors were apparent that depended on a 
combination of the simulated HR, simulated FAR, and simulated presentation rate 
for HR estimation (Fig. 4) and FAR estimation (Fig. 5). Estimation errors taken 
over the entire range of simulated HR and FAR were smallest for the regression 
method at all simulated rates with median absolute difference between estimated 
and simulated HRs of 0.001, 0.002, and 0.004 for presentation rates of 2, 4, and 10 
Hz, respectively (Table 1), as well as median absolute difference for FARs of 0.001, 
0.002, and 0.002 for presentation rates of 2, 4, and 10 Hz, respectively (Table 2). 
However, the regression method also had the largest variability for HR estimates at 
4- and 10-Hz presentation and FAR at 10 Hz, measured as the standard deviation 
of all estimates after the median of all 250 estimates within a simulated HR/FAR 
cell had been subtracted (Tables 1 and 2). For the HR estimate, the regression 
method’s variability was 0.022 and 0.053 at 4 and 10 Hz, respectively, and for the 
FAR estimate, the regression method’s variability was 0.010 at 10 Hz. 
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Fig. 4 HR estimation error summary. Each panel shows the simulation results for one of 
the estimation methods (columns) at a particular presentation rate (rows) when the true PDF 
of the response times was known. Colors indicate the difference between the median estimate 
of the HR and the simulated value of HR, clipped to an absolute value of 0.2. Within a panel, 
simulated FAR increases from left to right, and simulated HR increases from bottom to top. 
All methods except the regression method have HR estimation errors that clearly depend on 
the simulated HR and FAR, and the overall magnitude of errors increases as the presentation 
rate increases. 

 
Fig. 5 FAR estimation error summary. Each panel shows the simulation results for one of 
the estimation methods (columns) at a particular presentation rate (rows) when the true PDF 
of the response times was known. Colors indicate the difference between the median estimate 
of the FAR and the simulated value of FAR clipped to an absolute value of 0.1. Within a panel, 
simulated FAR increases from left to right, and simulated HR increases from bottom to top. 
All methods except the regression method have FAR estimation errors that clearly depend on 
the simulated HR and FAR, and the overall magnitude of errors increases as the presentation 
rate increases. 
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Table 1 HR estimate performance with accurate RT-PDF 

Method 

Presentation rate (Hz) 

2 4 10 

err std err std err std 

Window 0.280 0.016 0.447 0.012 0.518 0.008 
Distribution 0.016 0.007 0.106 0.016 0.260 0.013 
Max. attrib. 0.012 0.007 0.080 0.017 0.217 0.023 
Regression 0.001 0.008 0.002 0.022 0.004 0.053 

Notes: err = median absolute difference of each estimate from simulated values; std = standard deviation of 
estimates with median error subtracted. 

 

Table 2 FAR estimate performance with accurate RT-PDF 

Method 

Presentation rate (Hz) 

2 4 10 

err std err std err std 

Window 0.053 0.003 0.085 0.002 0.099 0.002 
Distribution 0.003 0.001 0.020 0.003 0.049 0.003 
Max. attrib. 0.010 0.002 0.064 0.005 0.144 0.006 
Regression 0.001 0.001 0.002 0.004 0.002 0.010 

Notes: err = median absolute difference of each estimate from simulated values; std = standard deviation of 
estimates with median error subtracted. 

4.3 Statistical Assessment of Bias in Estimation 

To statistically assess the extent to which estimation errors depended on simulated 
HR, simulated FAR, and simulated presentation rate, HR estimation errors were 
first analyzed with a 4-way analysis of variance (ANOVA) with a categorical factor 
of estimation method (window, max, distribution, or regression) and continuous 
factors of presentation rate (2, 4, and 10 Hz), simulated HR, and simulated FAR 
(both ranging from 0 to 1.0 at 0.01 increments) (Table 3). 
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Table 3 Omnibus ANOVA for HR estimation with accurate RT-PDF 

Source d.f. F η2 p-value 

Method 3 5.67 × 105 0.0198 0.0000 
Rate 1 3.19 × 106 0.0372 0.0000 
HR 1 7.47 × 105 0.0087 0.0000 

FAR 1 1.88 × 106 0.0218 0.0000 
method*rate 3 2.97 × 106 0.1039 0.0000 
method*HR 3 4.35 × 106 0.1520 0.0000 

method*FAR 3 2.16 × 105 0.0075 0.0000 
rate*HR 1 2.79 × 106 0.0324 0.0000 

rate*FAR 1 9.45 × 106 0.1100 0.0000 
HR*FAR 1 8.13 × 105 0.0094 0.0000 

method*rate*HR 3 1.86 × 106 0.0650 0.0000 
method*rate*FAR 3 1.08 × 106 0.0378 0.0000 
method*HR*FAR 3 9.97 × 105 0.0348 0.0000 

rate*HR*FAR 1 9.54 × 103 0.0001 0.0000 
method*rate*HR*FAR 3 7.96 × 104 0.0027 0.0000 

Error 3.06 × 107 . . . 0.3564 . . . 

 
Because estimation method interacted with all other factors, individual ANOVAs 
were run for each method with factors presentation rate, simulated HR, and 
simulated FAR. Results of method-specific analyses are presented in Tables 4–7. 
In summary, all factors and interactions were statistically significant for the 
window method, with the 2 largest effects, measured with η2, being the HR  
(η2 = 0.226) and presentation rate (η2 = 0.225). For the max method, all factors and 
interactions were statistically significant, with the interaction of presentation rate 
with HR (η2 = 0.240) and the interaction of presentation rate with FAR (η2 = 0.355) 
being the 2 largest effects. For the distribution method, all factors and interactions 
except the main effect of presentation rate and the interaction of HR with FAR were 
statistically significant, with the interaction of presentation rate with HR  
(η2 = 0.370) and of presentation rate with FAR (η2 = 0.371) having the largest 
effects. For the regression method, HR, FAR, and the interaction of those with 
presentation rate as well as the 3-way interaction were statistically significant, but 
the effect sizes of all factors and interactions were less than 10−4. This indicated 
that although the regression method’s estimates do systematically depend on the 
presentation rate, HR, and FAR, the effects each account for less than 0.01% of the 
variance in the data. The statistical analysis on the FAR estimation errors produced 
similar results. 
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Table 4 Method-specific ANOVA window method 

Source d.f. F η2 p-value 

Rate 1 4.34 × 106 0.2245 0.0000 
HR 1 4.37 × 106 0.2264 0.0000 

FAR 1 2.08 × 105 0.0108 0.0000 
rate*HR 1 1.28 × 105 0.0066 0.0000 

rate*FAR 1 1.25 × 106 0.0645 0.0000 
HR*FAR 1 1.36 × 106 0.0702 0.0000 

rate*HR*FAR 1 2.13 × 104 0.0011 0.0000 
Error 7.65 × 106 . . . 0.3960 . . . 

 

Table 5 Method-specific ANOVA max attribution method 

Source d.f. F η2 p-value 
Rate 1 2.61 × 104 0.0009 0.0000 
HR 1 1.53 × 106 0.0499 0.0000 

FAR 1 2.56 × 106 0.0838 0.0000 
rate*HR 1 7.34 × 106 0.2400 0.0000 

rate*FAR 1 1.09 × 107 0.3554 0.0000 
HR*FAR 1 5.83 × 104 0.0019 0.0000 

rate*HR*FAR 1 5.58 × 105 0.0182 0.0000 
Error 7.65 × 106 . . . 0.2500 . . . 

 

Table 6 Method-specific ANOVA distribution method 

Source d.f. F η2 p-value 

Rate 1 1.26 0.0000 0.2620 
HR 1 4.79 × 106 0.0718 0.0000 

FAR 1 4.81 × 106 0.0720 0.0000 
rate*HR 1 2.47 × 107 0.3704 0.0000 

rate*FAR 1 2.48 × 107 0.3711 0.0000 
HR*FAR 1 0.11 0.0000 0.7396 

rate*HR*FAR 1 6.71 0.0000 0.0096 
Error 7.65 × 106 . . . 0.1146 . . . 
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Table 7 Method-specific ANOVA regression method 

Source d.f. F η2 p-value 

Rate 1 0.00 0.0000 0.9565 
HR 1 233.38 0.0000 0.0000 

FAR 1 115.08 0.0000 0.0000 
rate*HR 1 101.94 0.0000 0.0000 

rate*FAR 1 190.05 0.0000 0.0000 
HR*FAR 1 2.29 0.0000 0.1303 

rate*HR*FAR 1 15.40 0.0000 0.0001 
Error 7.65 × 106 . . . 0.9999 . . . 

4.4 Simulations Run with Inaccurate RT-PDF Estimates 

The second set of simulations used flat RT-PDF estimates to assess the performance 
of the RT-PDF-dependent methods when the estimated RT-PDF does not match the 
true RT-PDF. Results for HR and FAR estimation are detailed in Figs. 6–8. 

 

 

Fig. 6 Estimation method performance examples with flat RT-PDF 

 



 

Approved for public release; distribution is unlimited.  
17 

 
Fig. 7 HR estimation error summary with flat RT-PDF 

 

 
Fig. 8 FAR estimation error summary with flat RT-PDF 

Numerical summaries for HR and FAR estimation are shown in Tables 8 and 9. 
Compared with the correct RT-PDF results, the distribution and max methods both 
had larger errors over a larger range of HR and FAR when using the flat RT-PDF. 
The regression method’s estimation errors increased somewhat by using the 
incorrect RT-PDF, but overall errors were smallest. 
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Table 8 HR estimate performance with flat RT-PDF 

Method 

Presentation rate (Hz) 

2 4 10 

err std err std err std 

Window 0.280 0.016 0.447 0.012 0.518 0.008 
Distribution 0.190 0.014 0.299 0.009 0.333 0.005 
Max. attrib. 0.088 0.017 0.347 0.022 0.328 0.023 
Regression 0.010 0.030 0.027 0.058 0.033 0.105 

Notes: err = median absolute difference of each estimate from simulated values; std = standard deviation 
of estimates with median error subtracted. 

 

Table 9 FAR estimate performance with flat RT-PDF 

Method 

Presentation rate (Hz) 

2 4 10 

err std err std err std 

Window 0.053 0.003 0.086 0.002 0.099 0.001 

Distribution 0.037 0.003 0.059 0.002 0.065 0.001 

Max. attrib. 0.079 0.005 0.132 0.006 0.176 0.006 

Regression 0.003 0.006 0.004 0.011 0.004 0.020 
Notes: err = median absolute difference of each estimate from simulated values; std = standard deviation 
of estimates with median error subtracted. 

4.5 Analyzing Experiment Data 

As an example of the effect of using different analysis methods on real data, the 
actual (rather than simulated) responses were analyzed. HR estimates are shown for 
each of the 15 subjects in Fig. 9. HRs were fairly high, ranging from 78.4% to 
90.5% across subjects and estimation methods. A one-way repeated-measures 
ANOVA revealed a significant effect of analysis method on HR estimate (F(3,42) 
= 36.0, p = 1.1 × 10−11, η2 = 0.131). Follow-up paired comparisons (Bonferroni 
corrected) showed that the distribution estimate (M = 0.843, SE = 0.002) and max  
estimate (M = 0.848, SE = 0.002) were not significantly different (p = 0.25), and 
the window (M = 0.864, SE = 0.002) and regression (M = 0.864, SE = 0.002) 
estimates were also not significantly different (p = 1.0), but both max and 
distribution estimates were significantly lower than both the window and regression 
estimates (all p < 0.00001). 
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Fig. 9 Estimated HRs from experimental data with 4 different estimation methods. HR was 
estimated from the response data from 15 subjects using the distribution (d), max (x), window 
(w), and regression (r) methods. The colors for individual subject data are based on the 
estimates from the regression method to illustrate how the relative ordering of subjects 
changes based on estimation method. 

4.6 Discussion 

The primary goal of these simulations was to test how well the proposed regression 
method for estimating HR and FAR in RSVP target-detection tasks could recover 
the true simulated HR and FAR relative to established methods. The simulation 
results showed that the proposed regression method was more accurate than 
established methods, although accuracy comes at the cost of some precision. 

The simulations comparing the performance of the 4 HR and FAR estimators 
revealed systematic errors in all 4 methods, such that the error in HR and FAR 
estimates depended on some combination of the true value of the HR, FAR, and 
presentation rate, but the inaccuracy of the 4 methods was not equivalent. 

The window method overestimates the HR as the true HR decreases and/or the true 
FAR increases. This can be understood as the result of the benefit-of-the-doubt 
approach this method represents. Any response within a window of a target is 
declared a hit by this method, so any false alarm that occurs in temporal proximity 
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to a target might be incorrectly classified as a hit. Additionally, responses to targets 
that are slow enough to fall outside the 1-s window will be misclassified as misses. 
An important property of the window method demonstrated in the results here is 
that when the true FAR is very low, this method yields fairly accurate estimates of 
HR and FAR. This is because as the FAR approaches zero, the vast majority of 
responses will actually be hits, and the vast majority of hits should fall within the 
window and therefore be correctly classified by this method. This was illustrated in 
the “excellent” performance simulation (Fig. 3) in which the HR was slightly 
underestimated and the FAR was slightly overestimated.  

Overall, the max and distribution methods made smaller errors in HR estimation 
than the window method (Table 1), although errors were relatively large in the 
range of HR and FAR that might be associated with good or excellent task 
performance (Fig. 3). Both of these methods had their lowest estimation errors 
when the simulated HR and FAR were similar. Because RSVP experiments 
typically report fairly high HR and low FAR, in practice, both of these methods are 
expected to underestimate the HR and overestimate the FAR. 

The regression method had lower estimation error than the other 3 methods, and 
the errors do not depend strongly on the true values of HR and FAR. The 
distribution method makes systematic errors that depend strongly on the true HR, 
FAR, and presentation rate (Table 4), and the regression method attempts to correct 
for those errors by accounting for how errors contribute to the expected value of 
the apportionment to any given stimulus using linear regression. The statistical 
analysis of the estimation errors of the regression method revealed a reliable effect 
of the interaction of FAR with presentation rate, but the effect size was less than 
10−4. The absence of nontrivial linear effects revealed in the ANOVA is evidence 
that the linear regression method accomplished its goal. Nonlinear effects could 
potentially affect the estimation error of the regression method, but given the small 
overall estimation error of the regression method (Tables 1 and 2), any such effects 
do not appear to have a major impact, at least under the conditions simulated here. 

The presentation rate had a sizeable impact on estimate accuracy on all of the 
estimation methods except the regression method, although the precision of the 
regression method’s estimates decreased as the presentation rate increased. The 
increases in estimation error can be understood as a consequence of the increasing 
ambiguity of which stimulus elicited a particular response. Although such a slow 
rate was not tested here, clearly if the stimuli are spaced far enough apart, then 
errors in response assignment would be very rare. As more stimuli fall into a 
temporal range of plausibly causing a response, the harder it will be to correctly 
assign that response to a stimulus. 
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One potential caveat to the apparent success of the regression method is that in our 
simulations, the regression method was provided with the true probability density 
function for response times (RT-PDF). In practical use, the RT-PDF would have to 
be estimated from the available data. For completeness, simulations included true 
HRs that were low or zero. In those situations, estimating an RT-PDF would be 
difficult or impossible, so in our second set of simulations we provided all of the 
analysis methods with a highly incorrect, uniform RT-PDF (Tables 5 and 6). 
Having such a poor estimate of the RT-PDF did not obliterate the RT-PDF-
dependent methods, although the performance of those methods did drop 
somewhat. Based on this result, it seems that even if estimation of the RT-PDF is 
poor, the regression method may still be recommended. 

 An assumption of the regression method is that responses to different stimuli are 
independent. Strictly, this assumption is incorrect for 2 reasons. First, the method 
assumes that it is possible for 2 responses to occur at the same time (e.g., a slow 
response to an earlier stimulus occurs simultaneously with a fast response to a later 
stimulus), but in practice there are limits to how quickly a person can press a button 
twice. This first assumption was in fact violated in the simulations run here, because 
in the rare event that multiple responses occurred at the same time, those responses 
were conflated into a single response. The chance of response collisions increases 
as the number of overall responses increases, and this would be most prevalent at 
fast presentation rates with high FARs, and it might explain the small but significant 
interaction of FAR with presentation rate that impacted the estimation error of the 
regression method. 

Second, humans typically fail to perceive images that fall within a short window of 
time starting shortly after a target image. This phenomenon is called the attentional 
blink (Raymond et al. 1992; Shapiro et al. 1997). This could temporarily lower the 
HR and/or the FAR by reducing the probability of responding for a short time after 
each response. There was no modeling of the attentional blink in the simulations 
done here, so its impact on any of the estimation methods here cannot be assessed. 

To illustrate the impact the choice of HR/FAR estimation method might have in an 
experimental setting, behavioral results from a target-detection experiment were 
analyzed using the 4 methods tested in simulations. The impact of analysis method 
on the overall HR and FAR estimates was statistically significant, and the effect of 
analysis method was consistent with the simulation results of good performance 
overall. Qualitatively, this provides support for the validity of our simulations. 
However, for some individuals, the regression method estimated a somewhat higher 
HR than the window method (Fig. 9). Inspection of the responses from the subjects 
for whom the regression method had a higher estimate than the window method 
revealed that these subjects appeared to occasionally respond twice within a  
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500-ms span (corresponding to the interstimulus interval). If a single target image 
elicits 2 responses, the window method calls one a hit and the other a false alarm, 
so double-responding would not inflate the HR estimate. The regression method, 
however, does not have special handling of double responses, and they could inflate 
the HR estimate. Based on these data, we cannot know if these responses are 
examples of nonindependence. It could be that the subjects inadvertently pressed 
the response button twice after seeing a target image, or it could be that the 2 button 
presses were intended as responses to consecutive images. 

5. Conclusions 

Based on its better estimation of HR and FAR, the regression method proposed here 
would seem the best choice when estimating the HR and FAR is the primary 
interest. If the FAR is known to be essentially equal to 0, the window method may 
have an advantage because the window method is somewhat simpler to implement 
and is more precise with faster presentation rates. In the more general case in which 
the FAR may be non-negligible and a fast presentation rate is used, the regression 
method is likely to provide the most-accurate estimates of HR and FAR. 

In real-world applications, the goal of using an RSVP target-detection paradigm 
may not be to estimate the HR and FAR but to find targets in a set of images when 
it is unknown whether any particular image constitutes a target. When the status of 
an image as a target is unknown, the window and regression methods cannot be 
applied directly, so alternative methods are needed. Both the distribution and max 
methods can be applied to unknown images, but when the human operator’s 
performance is good, these methods have poor performance in the aggregate. Past 
efforts have used a Bayesian formulation to estimate the probability that a stimulus 
is a target given a response at some latency relative to the target (Gerson et al. 
2006). That method includes estimated HR and FAR terms that must be learned 
from some training data set. With the more-accurate HR and FAR estimates 
afforded by the regression method proposed here, more-accurate estimates of target 
probability can also be derived.  

Although the focus of this report is on target-detection accuracy in the RSVP 
paradigm, many related projects focus on using some physiological measure to 
enable a brain–computer interface for target detection (Gerson et al. 2006; Luo and 
Sajda 2009; Privitera et al. 2010; Sajda et al. 2010). Electroencephalography 
(EEG)-based classification can sometimes classify images correctly even when the 
behavioral response was incorrect (Sajda et al. 2003; Bigdely-Shamlo et al. 2008). 

Brain-activity-based classification may be less susceptible to temporal uncertainty, 
because sensory processing is less temporally variable than behavioral responses 
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(Schall and Bichot 1998). However, temporal variability remains in neural 
responses used for classification with EEG. Classification methods are in use that 
are robust to temporal variability of neural signals (Rivet et al. 2009; Marathe et al. 
2014b), but the same ambiguity in mapping button-press responses back to their 
evoking stimuli applies when mapping event-related potential events back to their 
evoking stimuli. Approaches derived from the regression method introduced here 
should aid in resolving the ambiguity in assigning classification scores to 
appropriate stimulus images. 

While the goal of using EEG or pupilometry instead of button presses to find targets 
in image databases holds promise, perhaps more promising is a fusion approach 
(Luo and Sajda 2006; Marathe et al. 2014a) in which both physiological and overt 
behavioral responses are combined. In such an approach, better estimates of 
behavioral characteristics derived from the regression method introduced here 
should lead to more-effective systems overall. 
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Appendix. Rapid Serial Visual Presentation Performance (RSVP) 
Estimator (RPE) Package Source Code 
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A.1 Licensing 

Copyright 2016 Benjamin T. Files 

Licensed under the Apache License, Version 2.0 (the “License”). You may not use 
this file except in compliance with the License. You may obtain a copy of the 
License at http://www.apache.org/licenses/LICENSE-2.0. 

Unless required by applicable law or agreed to in writing, software distributed 
under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES 
OR CONDITIONS OF ANY KIND, either express or implied. See the License for 
the specific language governing permissions and limitations under the License. 

A.2 example_script.m 

%% Overview 
% This script shows an example of how to use the  
% RSVPPerformanceEstimator. 
% 
% The bulk of the script simulates an RSVP target detection  
% experiment.  To use this code with your data, you need to setup  
% the following three variables: 
% stim_time:    nstim-length vector of stimulus times, in seconds  
% with whatever precision is available, at least millisecond. 
% stim_label:   nstim-length vector of stimulus labels, true for  
% target, false otherwise. 
% button_time: The time (again, in seconds) of button press  
% starts. 
% 
% Then initialize the estimator like so: 
% e = rpe.RSVPPerformanceEstimator(stim_time, stim_label,  
% button_time); 
% and run the estimator: 
% [hr, far] = e.runEstimates; 
% 
% As written, this example script simulates data and then  
% estimates performance using the conventional window method and  
% the regression method of Files & Marathe (2016). HR and FAR  
% estimates are printed to the command window, and response time  
% PDF and estimates are plotted. 
% 
% See Also rpe.RSVPPerformanceEstimator rpe.exGaussPdf  
% rpe.fitExGauss 
% 
% Reference  
% Files, B. T., & Marathe, A. R. (2016). A regression method for  
% estimating performance in a rapid serial visual presentation  
% target detection task. Journal of Neuroscience Methods, 258,  
% 114?123. http://doi.org/10.1016/j.jneumeth.2015.11.003 
  
%% Simulation settings 
% This simulates an RSVP experiment.  Stimuli are shown in  
% blocks, with some amount of time between blocks.  Stimulation  
% rate, block length, inter-block interval and number of blocks  
% are all configurable.  
% 

http://www.apache.org/licenses/LICENSE-2.0
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% Some stimuli are assumed to be nontargets, and others are 
% targets. The proportion of targets is configurable. 
% 
% For responses, a proportion of targets (pHit) generate a  
% response and a proportion of nontargets (pFa) also generate a  
% response. Response latencies are sampled from an exGaussian  
% distribution configurable parameters. 
  
% for deterministic performance 
rng('default');  
% change to  
%rng('shuffle')  
% if you want to get a sense of how much variability you can get  
% on repeated runs. 
  
% stimulation settings 
stim_rate = 4; % Stim/s 
block_length = 60; % s 
inter_block_interval = 10; % s 
n_block = 10; % number of blocks 
pTar = 0.1; % proportion of stimuli that are targets 
  
% True performance parameters 
pHit = 0.6; % hit rate 
pFa = 0.1; % false-alarm rate 
  
% exgaussian RT parameters 
mu = 0.3; 
sigma = 0.1; 
tau = 0.15; 
  
% exgaussian random numbers 
exgr = @(sz) normrnd(mu, sigma, sz) + exprnd(tau, sz); 
  
%% Run the simulation 
% Setup stimulus times 
block_stim = 0:(1/stim_rate):block_length; 
stim_time_mtx = repmat(block_stim(:), 1, n_block); 
blk_add = (0:(n_block-1)).*(block_stim(end) + inter_block_interval); 
stim_time_mtx = bsxfun(@plus, blk_add, stim_time_mtx); 
stim_time = stim_time_mtx(:)'; 
  
% setup stimulus labels 
nTar = round(numel(stim_time)*pTar); 
lbl = false(size(stim_time)); 
lbl(1:nTar) = true; 
stim_label = lbl(randperm(numel(stim_time))); 
  
% setup buttonpresses 
nHit = round(pHit*sum(stim_label)); 
tar_times = stim_time(stim_label); 
hit_idx = false(size(tar_times)); 
hit_idx(1:nHit) = true; 
hit_idx = hit_idx(randperm(numel(hit_idx))); 
hit_times = tar_times(hit_idx); 
hit_responses = exgr(size(hit_times)) + hit_times; 
  
nFa = round(pFa*sum(~stim_label)); 
nt_times = stim_time(~stim_label); 
fa_idx = false(size(nt_times)); 
fa_idx(1:nFa) = true; 
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fa_idx = fa_idx(randperm(numel(fa_idx))); 
fa_times = nt_times(fa_idx); 
fa_responses = exgr(size(fa_times)) + fa_times; 
  
button_time = sort([hit_responses fa_responses]); 
  
%% Visualize the experiment timeline 
% % Not a great visualization, but might be good for debugging 
% figure('Name', 'Simulated Timeline'); 
% stem(tar_times, ones(size(tar_times)), 'b', 'marker', 'none'); 
% hold on; 
% stem(nt_times, ones(size(nt_times)), 'g', 'marker', 'none'); 
% stem(button_time, 1.1 * ones(size(button_time)), 'k', 'marker',  
% 'none'); 
  
%% Do a conventional window analysis 
win_lo = 0.0; 
win_hi = 1.0; 
in_any_win = false(size(button_time)); 
n_hit = 0; 
for iTar = 1:numel(tar_times) 
    tt = tar_times(iTar); 
    in_win = button_time > tt + win_lo & button_time < tt+win_hi; 
    if any(in_win), 
        n_hit = n_hit + 1; 
    end 
    in_any_win(in_win) = true; 
end 
  
win_hr = n_hit/numel(tar_times); 
win_far = sum(~in_any_win)/numel(nt_times); 
  
  
%% Do the regression estimation 
% setup the estimator 
e = rpe.RSVPPerformanceEstimator(stim_time, stim_label, button_time); 
  
% Now run the estimator 
tic 
[hr, far] = e.runEstimates(); 
toc 
% This step might take a few minutes, depending on how many  
% stimuli you give it and how close the stimuli are together in  
% time. Also, responses that are very close together in time are  
% potentially problematic. In this example, a warning is thrown  
% but otherwise ignored. 
  
%% Report estimates 
fprintf(1, '\n=== Window Method ===\n'); 
fprintf(1, 'Estimated HR \t%0.4f, true value was %g\n', win_hr, pHit); 
fprintf(1, 'Estimated FAR \t%0.4f, true value was %g\n', win_far, pFa); 
  
fprintf(1, '\n=== Regression Method ===\n'); 
fprintf(1, 'Estimated HR \t%0.4f, true value was %g\n', hr, pHit); 
fprintf(1, 'Estimated FAR \t%0.4f, true value was %g\n', far, pFa); 
  
%% Visualize the response time distributions 
figure('Name', 'Simulated response distribution'); 
subplot(2,1,1); 
edg = 0:.05:1.5; 
N = histc([fa_responses-fa_times hit_responses-hit_times], edg); 
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bar(edg, N, 'histc'); 
x = 0:.001:1.5; 
pdf = rpe.exGaussPdf(x, mu, sigma, tau); 
npdf = numel(button_time)*pdf*diff(edg([1 2])); 
hold on; 
plot(x, npdf, 'r'); 
title('true distribution') 
  
subplot(2,1,2); 
eN = histc(e.rt_list, edg); 
epdf = e.pdf_fcn(x); 
enpdf = numel(e.rt_list)*epdf*diff(edg([1 2])); 
bar(edg, eN, 'histc'); 
hold on; 
plot(x, enpdf, 'r'); 
title('estimated distribution'); 

A.3 RSVPPerformanceEstimator.m 

classdef RSVPPerformanceEstimator < handle 
% An implementation of a regression-based method for estimating  
% hit rate and false-alarm rate in an RSVP target detection  
% experiment. 
% 
% Justification, derivation, and simulations validating this  
% method are presented in Files & Marathe, 2016. 
% 
% Methods will attempt to use parallel for (parfor) loops if the 
% parallel processing toolbox function gcp() is available and  
% returns without error. 
% 
% Example 
% e = rpe.RSVPPerformanceEstimator(stim_time, stim_lbl, button_time); 
% [hr, far] = e.runEstimates(); 
% 
% Reference 
% Files, B. T., & Marathe, A. R. (2016). A regression method for 
% estimating performance in a rapid serial visual presentation  
% target detection task. Journal of Neuroscience Methods, 258,  
% 114?123. http://doi.org/10.1016/j.jneumeth.2015.11.003 
% 
% RSVPPerformanceEstimator properties: 
% Must be set by user (in constructor) 
% stimulus_times - times (s) at which stimuli were presented 
% stimulus_labels - true for targets, false otherwise 
% buttonpress_times - times (s) at which button was pressed 
% 
% Options with default values 
% time_resolution - resolution of PDF approximation (s) 
%                       default .001. 
% response_window - response time window for RT estimates (s) 
%                       default [0.0 1.0]. 
% pdf_support - how long after the stimulus to compute RT PDF (s) 
%                       default 1.5 
% 
% RSVPPerformanceEstimator methods: 
%   RSVPPerformanceEstimator - Constructor takes 3 arguments: 
%                             stim_times, stim_lbls, button_times 
%   runEstimates - Estimates the response time PDF and uses that  
%                  to estimate HR and FAR.  Uses estimatePdf and 
%                  estimatePerformance 
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% 
% See Also example_script 
  
  
properties 
    stimulus_times; % times (s) at which stimuli were presented 
    stimulus_labels; % true for targets, false otherwise 
    buttonpress_times; % times (s) at which button was pressed 
  
    % configurable parameters 
    time_resolution = 0.001; % resolution of PDF approximation 
    % response time window for RT estimates 
    response_window = [0.0 1.0]; 
    % how long after the stimulus to compute RT PDF  
    pdf_support = 1.5;  
end 
  
properties (GetAccess=public, SetAccess=private) 
    % estimated parameters of the exGaussian response time  
    % distribution 
    mu % mean of the gaussian 
    sigma % standard deviation of the gaussian 
    tau % parameter of the exponential 
  
    % best guess at collection of response times 
    rt_list 
  
    % rt pdf convenience values: 
  
    pdf_fcn % function handle for the PDF estimate 
    pdf_est % pre-computed PDF values 
  
    beta            % explanatory variable for regression 
    response_scores % dependent variable for regression 
end 
  
methods 
    function obj = RSVPPerformanceEstimator(varargin) 
        % Takes 3 arguments: stim_time, stim_lbl,  
        % buttonpress_time. 
        if nargin == 0, 
            return 
        end 
  
        ip = inputParser(); 
        ip.addRequired('stim_t'); 
        ip.addRequired('stim_lbl'); 
        ip.addRequired('bp_t'); 
  
        ip.parse(varargin{:}); 
        obj.stimulus_times = ip.Results.stim_t; 
        obj.stimulus_labels = ip.Results.stim_lbl; 
        obj.buttonpress_times = ip.Results.bp_t; 
    end 
    function [hr, far, hrci, farci] = runEstimates(obj, cialpha) 
        % Estimate the rt pdf, HR and FAR. 
        % [hr, far] = updateEstimates() 
        % 
        % See also estimatePdf estimatePerformance 
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        if nargin < 2, 
            cialpha = .05; 
        end 
  
        obj.estimatePdf; 
        if nargout == 2, 
            [hr, far] = obj.estimatePerformance; 
        elseif nargout == 4, 
            [hr, far, hrci, farci] = obj.estimatePerformance(cialpha); 
        end 
    end 
  
    function estimatePdf(obj) 
        % estimates a new response time PDF 
        % Stimulus labels and stimulus and button press times  
        % must already be set. 
        % See also rpe.fitExGauss rpe.exGaussPdf 
  
        assert(~isempty(obj.stimulus_times), ... 
            'RPE:TrainPdf:MissingStimulusTimes', ... 
            'Cannot train response PDF with no stimuli.'); 
        assert(~isempty(obj.stimulus_labels), ... 
            'RPE:TrainPdf:MissingStimulusLabels', ... 
            'Cannot train response PDF with no stimulus labels.'); 
        assert(~isempty(obj.buttonpress_times), ... 
            'RPE:TrainPdf:MissingButtonPress', ... 
            'Cannot train response PDF with no button presses.'); 
  
        %% build the RT list 
        obj.buildRTList(); 
  
        %% from that vector, fit an exGaussian 
        % ex gaussian is a distribution arising from a random  
        % variable that is the sum of a normally distributed  
        % random variable and an exponentially distributed random  
        % variable. The exGaussian three parameters: tau is the  
        % parameter of the exponential and mu & sigma are the  
        % mean and standard deviation of the normal distribution. 
        % 
        % These values are fit using maximum likelihood  
        % estimation. 
        [obj.mu,obj.sigma,obj.tau] = rpe.fitExGauss(obj.rt_list); 
        obj.pdf_fcn = @(rt) rpe.exGaussPdf(rt, ... 
            obj.mu,obj.sigma,obj.tau); 
  
        %% build a density approximation at requested resolution 
        t = obj.time_resolution:obj.time_resolution:obj.pdf_support; 
        obj.pdf_est = obj.pdf_fcn(t); 
    end 
    function [HR, FAR, HRCI, FARCI] = estimatePerformance(obj, alph) 
        % Estimate HR and FAR 
  
        % Build Beta 
        obj.buildBeta; 
  
        % Build Response Scores 
        obj.buildResponseScores; 
  
        % Solve for HR and FAR 
        %o = obj.beta\[obj.response_scores]'; 
        if nargout == 2, 
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            o = regress(obj.response_scores', obj.beta); 
        else 
            if nargin < 2, 
                alph = .05; 
            end 
            [o, ci] = regress(obj.response_scores', obj.beta, alph); 
            HRCI = ci(1,:); 
            FARCI = ci(2,:); 
        end 
  
        HR = o(1); 
        FAR = o(2); 
  
        % Correct HR/FAR 
        if HR > 1, 
            HR = 1; 
        elseif HR < 0, 
            HR = 0; 
        end 
        if FAR > 1, 
            FAR = 1; 
        elseif FAR < 0, 
            FAR = 0; 
        end 
    end 
end 
methods (Access=private) 
    function buildRTList(obj) 
        % To estimate the rt pdf, we need a collection of RTs.   
        % Because we don't know what stimuli evoked which  
        % responses, some heuristic is needed. The collection of  
        % RTs is built using the window method. This means we go  
        % over each target and look at a window of time after  
        % that target.  The first response that happens in that  
        % window is assumed to be evoked by that target, so their  
        % difference is added to a collection of RTs. 
        % 
        % This will, of course, be wrong sometimes, but it's the  
        % best we can do (that I can think of). 
  
        %% Initialize the parallel pool, if possible/needed 
        try 
            gcp(); 
        catch 
            % no parallel toolbox 
        end 
        %% find stimuli labeled as targets 
        tar_times = obj.stimulus_times(obj.stimulus_labels==true); 
        %% build a vector of response times 
        rts = zeros(size(tar_times)); 
        bpt = obj.buttonpress_times; 
        rw = obj.response_window; 
        % Note: creating local versions of these variables allows 
        % faster parallel execution. 
  
        parfor iTar = 1:numel(tar_times), 
            tt = tar_times(iTar); 
            resp_idx = find(bpt < tt+rw(2) & bpt > tt+rw(1)); %#ok 
            if numel(resp_idx) == 0, 
                %miss. 
                continue 
            elseif numel(resp_idx)>1, 
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                warning('RPE:BuildRTDist:MultiResponse',... 
                    ['The stimulus at time %f is followed by more ',... 
                    'than one responses (%d). Taking only the ',... 
                    'first.'],tt,numel(resp_idx)); 
                resp_idx = resp_idx(1); 
            end 
            rts(iTar) = bpt(resp_idx)-tt; 
        end 
        rts = rts(rts~=0); 
        obj.rt_list = rts; 
    end 
    function buildBeta(obj) 
        %Assemble the regression coefficients 
        try 
            gcp(); 
        catch 
            %parallel not available 
        end 
        l_beta = zeros(numel(obj.stimulus_times),2); 
  
        mxrt = obj.pdf_support; 
        ost = obj.stimulus_times; 
        osl = obj.stimulus_labels; 
        tr = obj.time_resolution; 
        l_pdf_fcn = obj.pdf_fcn; 
        l_pdf_support = obj.pdf_support; 
  
        parfor iStim = 1:numel(ost), 
            % get si, the stim of interest and sj, the list of stimuli 
            % whos responses could be attributed to si 
            si = ost(iStim); 
            idx_neighbor = ost >= (si-mxrt) & ... 
                ost <= (si+mxrt); 
            neighbor_times = ost(idx_neighbor); 
            neighbor_labels = osl(idx_neighbor); %#ok 
  
            % compute expected attribution from each of sj, partitioned 
            % as hit contributions and fa contributions. 
            b1 = 0; 
            b2 = 0; 
            for jNeighbor = 1:numel(neighbor_times), 
                sj = neighbor_times(jNeighbor); 
                % figure out times of responses that could be generated 
                % by sj and could contribute to attribution of si 
                t_min = max(si, sj); 
                t_max = min(si+mxrt, sj+mxrt); 
                t = t_min:tr:t_max; 
  
                % now compute attribution for each t 
                a = att(t,si, l_pdf_fcn, ost, l_pdf_support); %#ok 
  
                % compute the contribution to si of a response 
                % by sj conditioned on a response by sj. 
                e = sum(tr.*l_pdf_fcn(t-sj).*a); 
  
                lbl = neighbor_labels(jNeighbor); 
                if lbl, 
                    b1 = b1+e; 
                else 
                    b2 = b2+e; 
                end 
            end 
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            l_beta(iStim,:) = [b1 b2]; 
        end 
        obj.beta = l_beta; 
    end 
  
    function buildResponseScores(obj) 
        % Attribute each response to possible evoking stimuli. 
        obj.response_scores = zeros(size(obj.stimulus_times)); 
        for iResp = 1:numel(obj.buttonpress_times), 
            t = obj.buttonpress_times(iResp); 
            candidate_idx = obj.stimulus_times < t & ... 
                obj.stimulus_times > t - obj.pdf_support; 
  
            if ~any(candidate_idx), 
                % Rogue buttonpress. 
                continue; 
            end 
  
            st = t-obj.stimulus_times(candidate_idx); 
            lik = obj.pdf_fcn(st); 
            scores = lik./sum(lik); 
            obj.response_scores(candidate_idx) = scores + ... 
                obj.response_scores(candidate_idx); 
        end 
    end 
end 
end 

A.4 fitExGauss.m 

function [mu,s,tau] = fitExGauss(rts) 
% Finds the parameters of an ex-gaussian function given an rt  
% distribution using maximum likelihood estimation. 
% [mu,s,tau] = fitExGauss(rts) 
% 
% Input rts is an array of response times. For good results, this array 
% should have at least 30 entries. An error is thrown if it has less than 
% 2. 
% 
% Outputs: 
% 
% mu and s the mean and standard devaition for the gaussian part of the 
% exgaussian. 
% tau is the parameter of the exponential part of the exgaussian. 
% 
% Written by Benjamin Files. 
% 
% References 
% Palmer et al., (2011) What are the Shapes of Response Time 
% Distributions in Visual Search?,  Exp Psychol Hum Percept Perform.; 
% 37(1): 58?71. doi:10.1037/a0020747 
% 
% Van Zandt, T. (2000). How to fit a response time distribution. 
% Psychonomic Bulletin & Review, 7(3), 424-465. 
% 
% Inspired by DISTRIB toolbox of Yves Lacouture 
% http://www.psy.ulaval.ca/?pid=1529 
% 
  
if numel(rts) < 3, 
    error('Button:FitExGauss:NotEnoughSamples',... 
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        ['Cannot fit an ex-gaussian with less than 3 response times. 
',... 
        'only %d were provided.'],numel(rts)); 
end 
if numel(rts) < 30, 
    warning('Button:FitExGauss:FewSamples',... 
        ['Fitting an ex-gaussian with %d samples. A fit will be ',... 
        'provided, but the fit quality might be poor.'],numel(rts)); 
end 
  
% These initial values are recommended in DISTRIB: 
tauInit = std(rts)*.8; 
muInit = mean(rts)-tauInit; 
sigInit = sqrt(var(rts)-(tauInit.^2)); 
  
% Alternatively, use method of moments (e.g. Olivier, J., & Norberg, M.  
% M. (2015). Positively Skewed Data: Revisiting the Box-Cox Power  
% Transformation. International Journal of Psychological Research, 3(1), 
% 68-77. 
% 
% This method is more accurate but also brittle (it has a lot of weird 
% edges that result in nonsense estimates).   
%  
% g = skewness(rts); 
% s = std(rts); 
% m = mean(rts); 
%  
% muInit = m-s*(g/2)^(1/3); 
% sigInit = sqrt( s^2*(1-(g/2)^(2/3)) ); 
% tauInit = s*(g/2)^(1/3); 
  
  
start = [muInit,sigInit,tauInit]; 
  
% Setting bounds appropriately is tricky. In particular, if we let tau  
% get too small, we overflow, because tau appears in the denominator of  
% the eventual expression of the exGaussian PDF. max([0.01, min(rts)]) is 
% mostly from trial-and-error. 
% 
% Analternative approach (not implemented) might be to check if MLE is 
% trying to use a very small tau and instead of erroring, instead default 
% to a normal distribution. 
lb = [min(rts) min(rts) max([0.01, min(rts)])];  
ub = [max(rts) lb(2)+range(rts) lb(end)+range(rts)]; 
  
too_low = start < lb; 
start(too_low) = lb(too_low)+eps; 
  
too_high = start > ub; 
start(too_high) = ub(too_high)-eps; 
  
ss = statset(@mlecustom); 
ss.MaxFunEvals = 200*numel(rts); 
ss.MaxIter = 200*numel(rts); 
ss.FunValCheck = 'on'; 
phat = mle(rts,'pdf',@rpe.exGaussPdf,'start',start,'lowerbound',... 
    lb,'upperbound',ub,'options',ss); 
mu = phat(1); 
s = phat(2); 
tau = phat(3); 
end 
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A.5 exGaussPdf.m 

function p = exGaussPdf(x,mu,s,tau) 
% EXGAUSSPDF a probability density function for the exgaussian  
% distribution. 
% p = exGaussPdf(x,mu,s,tau)  
% 
% Mu, s and tau should be real numbers not less than zero.  Throws an  
% error if not.  
% Note, this blows up if tau is too small.  
% x is the time(s) for which the probability density is requested.  
% mu and s are the mean and standard devaition for the gaussian part of  
% the exgaussian. 
% tau is the parameter of the exponential part of the exgaussian.  
% x, mu, s and tau are all assumed to have the same units. 
% 
% Written by Benjamin Files 
  
% validate input. 
ip = inputParser; 
ip.addRequired('x',@isnumeric); 
ip.addRequired('mu',@checkInput); 
ip.addRequired('s',@checkInput); 
ip.addRequired('tau',@checkInput); 
ip.parse(x,mu,s,tau); 
x = ip.Results.x; 
mu = ip.Results.mu; 
s = ip.Results.s; 
tau = ip.Results.tau; 
  
% check for overflow 
tmp = mu/tau + s^2/(2*tau.^2) - x/tau; 
maxtmp = log(realmax); 
if any(tmp>=maxtmp), 
    warning('RPE:ExGaussPdf:BigExpPart',... 
        'A value exceeded max allowed.  Results will be approximate.'); 
    tmp(tmp>=maxtmp) = maxtmp/100; 
end 
  
% compute the pdf 
pE = exp(tmp); 
pG = normcdf( (x - mu - (s.^2/tau))/abs(s)); 
p = (1/tau).*pE.*pG; 
  
if any (p<=eps), 
    p(p<=eps) = eps; 
end 
end 
  
function ok = checkInput(v) 
ok = all([isnumeric(v),~isnan(v),~isinf(v),v>0]); 
end 
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List of Symbols, Abbreviations, and Acronyms 

ANOVA analysis of variance 

EEG electroencephalography 

FAR false-alarm rate 

HR hit rate 

PDF probability density function 

RPE RSVP performance estimator 

RSVP rapid serial visual presentation 

RT-PDF response-time probability density function 
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